
Epistenet: Facilitating Programmatic Access & Processing
of Semantically Related Mobile Personal Data
Sauvik Das

Carnegie Mellon University
sauvik@cmu.edu

Jason Wiese
University of Utah
wiese@cs.utah.edu

Jason I. Hong
Carnegie Mellon University

jasonh@cs.cmu.edu

ABSTRACT
Effective use of personal data is a core utility of modern
smartphones. On Android, several challenges make
developing compelling personal data applications difficult.
First, personal data is stored in isolated silos. Thus,
relationships between data from different providers are
missing, data must be queried by source of origin rather
than meaning and the persistence of different types of data
differ greatly. Second, interfaces to these data are
inconsistent and complex. In turn, developers are forced to
interleave SQL with Java boilerplate, resulting in error-
prone code that does not generalize. Our solution is
Epistenet: a toolkit that (1) unifies the storage and treatment
of mobile personal data; (2) preserves relationships between
disparate data; (3) allows for expressive queries based on
the meaning of data rather than its source of origin (e.g.,
one can query for all communications with John while at
the park); and, (4) provides a simple, native query interface
to facilitate development.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
The promise of intelligent and personalized experiences
motivates many of the most compelling smartphone
application concepts. Intelligent assistants such as Siri,
Google Now, and Cortana present their users with relevant
information based on past behavior. Application launchers
like Cover [23] and Aviate [24] predict what applications a
user will use in different contexts to make them easier to
launch. Logging applications like RescueTime [25] and
Moves [26] let users collect and reflect on their own
personal behavior. And, looking ahead, researchers
envision other exciting personal data apps for domains such
as health monitoring and ubiquitous smart environments.

An essential component for each of these applications is
access to the rich archives of personal data stored by
smartphones. Today, smartphones chronicle many of our
everyday experiences ranging from our virtual interactions,
such as our communication behavior and application usage,
to our physical state, such as our location and physical
activities [5,12]. As we delve further into the age of the
Internet of Things, the breadth, fidelity and richness of the
personal data available can only be expected to grow.
However, at a time when distributing mobile applications is
easier than ever before, several problems make developing
personal data applications unnecessarily challenging.

First, personal data is stored in isolated silos. Accordingly,
relationships between data from different providers are
hidden—e.g., there is no link between the fact that a user
was at the park and that she also played Angry Birds at
4:00pm. Consequently, while the most impressive personal
data applications are those that make intelligent inferences
on interconnections between data—e.g., predicting which
emails a user would like to access based on who she just
called or automatically logging one’s activities during her
visit to the park—accessing and making sense of these data
interconnections is needlessly difficult.

Another problem is that personal data must be accessed by
source-of-origin rather than meaning. This results in messy,
un-generalizable data querying pipelines for aggregating
semantically related data. For example, an application that
tries to calculate relationship strength based on a user’s
communications with her contacts would not be able to
simply query for the user’s “communications”—it would
have to separately query the call log, then the SMS inbox,
and then any other third-party communication applications
and interface with these data providers independently.

Yet another issue is the marked disparity in personal data
persistence across different data providers. Consider, for
example, the fact that call log data stretches back years yet
GPS readings do not stretch back even seconds. While all
of this data is enmeshed in a broader web of meaning, much
of this meaning is lost simply because some data is sensed
while other data is logged.

A final problem is programming complexity. Presently,
interfacing with multiple personal data providers requires
developers to interleave different programming patterns—a
proven cause of programming errors [13,14]. For instance,
on Android, to access personal log data (e.g., call logs and
browser history), one needs knowledge of databases, SQL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.	
MobileHCI '16, September 06 - 09, 2016, Florence, Italy 	
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.	
ACM 978-1-4503-4408-1/16/09�$15.00 	
DOI: http://dx.doi.org/10.1145/2935334.2935349

and Java iterator patterns to construct queries and process
their results. In contrast, to access personal sensor data
(e.g., accelerometer readings), one needs knowledge of
sensor life cycles and event-based programming. Thus, the
data acquisition and processing pipeline is cumbersome and
error-prone even for experienced developers.

To address these issues, we propose Epistenet—a tool that
semantically structures mobile personal data and offers a
unified query interface to facilitate accessing semantically
related personal data. Epistenet affords developers the
ability to query for (1) data based on meaning, not source of
origin; (2) data related to other, given data points,
irrespective of data provider; and (3) histories of sensor
data for a short period before and after other personal data
points. Example queries include all communications (spans
multiple data sources), all application usage in the last day
(data that would not otherwise be accessible), or web
searches that occurred within 5 minutes of this phone call
(spans multiple data sources; relative to other data). In
short, Epistenet lowers the complexity of accessing and
processing related personal data, and broadens the scope of
personal data that can be accessed with simple queries.

We offer the following novel contributions: (1) the design
of Epistenet—including an ontology to organize personal
data on mobile platforms in a knowledge graph, a native
query interface that facilitates the retrieval of semantically
related personal data, and data providers that afford
developers histories of sensed information surrounding
other personal data points; (2) an open-sourced proof-of-
concept implementation of Epistenet for Android; (3)
demonstrations of the utility and versatility of Epistenet
through the creation of example applications; and, (4) a
performance comparison of personal data querying tasks
with and without Epistenet.

RELATED WORK
Epistenet is, in many ways, a deliberate refinement and
extension of known ideas to a modern context. For
example, the observation that data are more useful when
relatable than when isolated is, alone, not novel. Harkening
back to the Semantic Web, there has been a tradition of
work aiming to break data out of their isolated siloes and
into unified, semantically organized representations. The
Resource Description Framework (RDF), for example, is a
general metadata framework designed to be a knowledge
representation mechanism for all web data [18]. Relatedly,
SPARQL is a query language developed to query data
encoded in RDF [27]. We note, of course, that there have
been a number of efforts to port RDF and SPARQL clients
to mobile platforms [4,7,16,22]. RDF and SPARQL alone,
however, are not a solution to the problem of siloed data
architectures: Rather, they enable potential solutions.

Yet, despite the continuing and formidable efforts of the
semantic technologies community, we continue to see
siloed data architectures on mobile platforms. This is not
because designers of modern mobile architectures are

ignorant of semantic technologies. Instead, we argue that
semantic technologies have yet to see widespread use on
mobile platforms because, alone, they do not provide a full
solution that both: organizes personal data in a manner
meaningful to the mobile personal data context and that
facilitates the querying of this data in a manner that is
simple for mainstream developers.

Epistenet builds on prior work in semantic technologies in
that its goal is to organize data by meaning rather than
source of origin. However, it differs in that it is architected
specifically for the purpose of integrating, organizing and
facilitating access to personal data specifically in the
mobile context. Furthermore, it a full solution—rather than
advocating the use of newly proposed standards and query
languages, we provide an architecture that structures mobile
personal data and exposes a native, unified interface to
query and filter this data.

Epistenet is also related to prior work from other subfields.
Indeed, prior work in sensor networks has tackled the
related problem of consolidating information from multiple
sensors. Researchers have proposed a number of solutions
related to the storage [2,3], representation [3,10], and
querying of data aggregated from raw sensor streams
[1,17]. Sensor networks commonly represent data as
schemaless tuple spaces [10], or collections of values
concatenated as individual elements of a tuple [3]. These
representations are terse, but can be difficult for application
developers to work with. Generally, Epistenet varies from
efforts in the sensor network literature in its scope (i.e., in
semantically organizing personal data) and purpose (i.e., to
simplify personal data application development).

Other work, e.g., Ohmage [21] and Lifestreams [9], has
looked specifically at the problem of aggregating personal
data, though these aggregators have typically focused
directly on end-user use cases. For example, getting people
to label personal data collections so that they can make
sense of their personal data later, or constructing
workspaces with relevant personal data. Epistenet differs
from this work in that it is focused on making it easier for
developers to create personal data applications that require
access to semantically related data. In this way, we believe
Epistenet is a tool that could be used to create systems like
Ohmage and Lifestreams. Similarly, others have developed
middleware solutions for efficient context extraction on
smartphones [8,19]. Notably, Epistenet is not a context
extraction or inference application; rather, it is a tool that
should make data acquisition for these applications easier.

EPISTENET SYSTEM OVERVIEW
To reiterate, our goal with Epistenet is to facilitate the
retrieval and processing of semantically related personal
data, as these data afford developers the richest
opportunities to create compelling apps. By personal data,
we mean data about the user. So, Epistenet should index
that the user sent an SMS to her friend, John, but not the
phone’s network connectivity when the message was sent.

By facilitating access to semantically related data, we mean
that Epistenet should make it easy to access both individual
data points and the whole web of interconnections between
data points. A personal data point is just one isolated datum
about the user—for example, that the user sent an SMS
message. But, that single data point is far less interesting
than the subgraph of related data in which it is embedded—
e.g., that the message was sent to Dad, while the user was at
the park, and shortly after she called Mom. The isolated
datum has little use alone, while the subgraph allows
developers to create smart application launchers like Cover
[23]. Presently, it is easy to get the datum but impossible to
get the subgraph without manually constructing the links
between data with every query.
With Epistenet, an individual data point should be an index
into the larger graph of personal data, and queries should
make it easy to retrieve subgraphs of related personal data.
Finally, by facilitating the processing of personal data, we
mean that developers should be able to easily use the data
they access. Presently, developers need to manually
interleave SQL expressions with Java boilerplate to retrieve
data, iterate through database records to process data, and
understand database abstractions to modify data.
Furthermore, they must do this separately for every data
provider. Epistenet should provide native representations of
personal data nodes, from any provider, that developers can
process and manipulate as they would any other object.
To accomplish our goal, Epistenet (1) constructs and
maintains a knowledge graph of smartphone personal data,
and (2) provides a unified query interface that allows
developers to query for subgraphs of the knowledge graph.
Figures 1-2 illustrate how the knowledge graph changes the
organization of mobile personal data.

Knowledge Graph
In the Epistenet knowledge graph, each personal data point
is an object, contributed by a data provider and
semantically organized into an ontology.

Objects
In Epistenet, objects are atomic units of personal data—for
example, a phone call, a website visit, or a location ping.

Objects have three components: descriptive attributes,
meta-attributes, and a link to at least one ontology class.

Descriptive attributes are key-value pairs of the core
information encapsulated by an object. For example, a
phone call might have four descriptive attributes: the
communication partner(s), the duration of the call, the
directionality of the call (outgoing or incoming), and
whether or not it was answered. Meta attributes store
information about the object. Each object has at least the
four meta attributes—timestamp: when it was added;
persistence: how long it should remain until being culled;
visibility: the permissions required to see the object; and,
provider: the provider that contributed the object.

Ontology class links serve two purposes. First, they “type”
an object because an object must have the descriptive and
meta attributes required by any ontology class to which it is
linked. For example, objects linked to an ontology class
describing website visits should have the website name and
URL as descriptive attributes and the referring website as a
meta attribute. Second, they organize objects into an
information hierarchy—for example, objects about phone
calls and SMS messages are both under “Communication”.

A benefit of abstracting personal data points into “objects”
is that they map nicely onto object-oriented programming
objects. Consequently, with Epistenet, processing personal
data points is the same as processing any other native object
as opposed to the rows and columns of database records.

Ontology
The Epistenet ontology is a key enabler of much of its core
functionality and is an adaptation of ideas from RDF
applied to the mobile context. The ontology organizes
objects so that data is structured by meaning rather than
source of origin. It is composed of a set of ontology classes
that are arranged hierarchically through subsumption (is-a)
relationships and have links to objects—e.g., an
accelerometer reading is a motion sensor reading.

Figure 2: With Epistenet, personal data is stored and

semantically structured in a knowledge graph.
Relationships between data are exposed, and
developers need only interface with one API.

Figure 1: Without Epistenet, personal data is stored

in silos. Developers must manually interface with
each data provider, and relationships are hidden.

This semantic organization, when paired with Epistenet’s
unified query interface, affords the retrieval of entire
subgraphs of related personal data. Indeed, we can access
semantically related data by querying for objects linked to a
shared top-level ontology class—e.g., we can find all data
contributed by motion sensors, such as the accelerometer
and the gyroscope, by querying Epistenet for objects with a
link to the “MotionSensor” class and any class it subsumes.

An additional benefit of organizing data by meaning rather
than source of origin is that developers need not care about
how many data providers produce related data—they
simply need to query for what data they want, not from
where they want it. For example, consider the popular
RescueTime app that logs how a user spends her time [25].
Without Epistenet, to count how much time a user spends
browsing the web, a developer would need to independently
query every web browser the user has installed on her
phone—and this could vary widely across users. With
Epistenet, data from all of those clients will be semantically
structured under the same “SiteVisited” ontology class.
Similarly, even if the user installs a new or deletes an old
browser, the query to get browsing history need not change.

We constructed an initial, example ontology that organizes
much of the personal data provided by default Android
sensors and content providers (see Figure 3). To do so, we
first enumerated all system-level (i.e., non-third-party) data
providers found on modern Android phones. Then, we
collaboratively and iteratively synthesized these data
providers into hierarchical clusters [20]. While this
ontology can be easily extended or replaced, it is sufficient
for our proof-of-concept implementation of Epistenet.

Data Providers
Data providers produce personal data in the form of objects.
Data providers can provide data in two ways: they can
either push objects to Epistenet as new data are created, or
Epistenet can pull data from them at regular intervals.
Epistenet can aggregate information from arbitrarily many

data providers—for example, system content providers such
as SMS logs or hardware sensors such as the accelerometer.

Another contribution of Epistenet is that it offers new data
providers that store short histories of sensor and usage
data—e.g., a user’s location for the past week, a 3-second
window of motion data surrounding a phone call, and
application usage logs. We wrote these providers to bridge
the disparity of data persistence between sensor and log
data. Both sensors and logs capture rich personal data, so
there is no reason for call logs to stretch back years but for
sensor data to not stretch back even seconds.

Consider the popular Moves app [26] that chronicles users’
daily physical activities and location traces. Without
Epistenet, developers need to manually store and associate
location and motion sensor information. Furthermore, they
would not be able to access this data prior to the user
installing their application, and thus the application would
initially offer no utility. With Epistenet, developers can
access brief histories of location and related motion sensor
information, even from before install-time, and would thus
be able to immediately provide utility. These novel
providers also eliminate the need for multiple applications
to redundantly store histories of sensor information.

Graph Maintenance
Finally, to be mindful of the limited storage capacities of
present-day mobile devices, the knowledge graph regularly
culls personal data objects that have expired persistence
fields. These persistence fields are initially set by
contributing data providers, but can be overridden if the
graph starts to overflow beyond a configurable, hard limit.

Unified Query Interface
The design and construction of the knowledge graph solves
the problems of breaking personal data out of isolated
siloes, as well as bridging the disparity of persistence
between sensed and logged data. To address the remaining
problems of reducing the programming complexity of
accessing personal data and allowing query construction
through meaning rather than source-of-origin, Epistenet
provides a native unified query interface (UQI). The UQI is
a single-point of entry that allows developers to all personal
data stored in the knowledge graph, regardless of its source.
Furthermore, the UQI allows developers to specify these
queries with native code and also returns native objects.

Filters
Developers specify personal data queries with filters.
Conceptually, filters are sieves that separate desirable
objects from the rest of the knowledge graph. For example,
an ontology-class filter could select objects that are linked
to the “Person” class. Generally, filters can constrain any
part of an object: its ontological links, descriptive attributes,
meta-attributes or its relationship with other objects. To
constrain one or many attributes of an object, a filter is
given a set of attribute constraints—key-value pairs of
attribute names mapped to an acceptable list of values.

Figure 3: Default Epistenet ontology for smartphone
personal data. Edges represent “is-a” relationships.

Available attribute constraints include greater/less than,
equals, in set, out of set and regex matching.

Filters can also be composited together to create more
powerful relational queries. There are three filter
composition operators in Epistenet that follow their
standard definitions: union (return objects from both
filters), intersect (return only objects in both filters), and
except (return all objects in either, but not both, filters).

One of Epistenet’s most powerful features is that filters can
be created relative to any personal data point. In other
words, each object acts as an index into the larger
knowledge graph. These relative filters allow developers to
expand from any given data point to a meaningful subgraph
of the knowledge graph. For example, after retrieving a set
of phone calls, it becomes trivial to access, for example, all
locations a user visited 30 minutes before those phone calls.

While Epistenet filters may not be exciting in isolation,
when used in tandem with Epistenet’s knowledge graph,
they make for a simple, powerful tool to surface complex
relationships between personal data points. Figures 4-6
graphically depict how Epistenet’s filters work.

Native APIs to Access, Process and Update Personal Data
Another feature of the UQI is that it is fully native. In our
Android implementation, queries are specified in Java and
return Java objects that represent their corresponding
Epistenet objects. Accordingly, accessing, processing and
updating personal data requires no knowledge of databases
or query languages. This ensures that data accessing and
processing pipelines are generalizable and robust (because
they are not tied to particular database schemas and URIs)
in addition to being simpler to use (as developers do not
need to shift programming mental models nor do they need
to coordinate between different interfaces).

Summary of Key Features
To summarize, Epistenet is an immediately usable full-
stack solution that organizes, unifies and facilitates access
to mobile personal data as well as bridges the disparity in
treatment and persistence between sensed and logged
personal data. To do so, Epistenet offers the following four
key features: (1) Epistenet semantically organizes personal
data in a knowledge graph; (2) Epistenet filters allow
developers to access personal data by their meaning and

relationships with other personal data rather than their
source of origin; (3) Epistenet provides historical sensor
and application usage information for a brief time window
around other personal data points; and, (4) Epistenet
provides a native unified query interface (UQI) for
developers to retrieve, process and/or update any personal
data in the knowledge graph.

USAGE SCENARIO
The following scenario demonstrates how Epistenet helps
Android developers address the many challenges in creating
personal data applications—specifically those that require
accessing sets of interrelated personal data. This scenario
describes the development of an autobiographical
authenticator: A form of authentication based on asking
people questions about their day-to-day experiences that
has been of increasing interest to researchers in recent years
[6,11]. Semantically interconnected personal data is core to
autobiographical authentication.

The developer in this scenario is Cedric, a young man who
has experience with Java and creating user-facing Android
apps, but has little experience with databases. Cedric is
building an autobiographical authenticator akin to the one
proposed by Das et al. [6]. His application will ask end-
users a number of multiple-choice questions, with each
question corresponding to a fact in the user’s everyday
experiences captured by their smartphones. Example
questions the application should ask include “Who did you
SMS message on Sunday, May 22nd, at around 9:40pm?”,
“Where were you on Monday, May 23rd, at around 1pm?”
and “What website did you visit on Tuesday, May 24th, at
around 3pm?”. Figure 7 shows a screenshot of the final app.

Every question asked consists of three components: a
personal data point that contains an answer to a question, a
set of answer choices from which the user must select the
correct answer, and a set of contextual hints that gives users
hints of other things that happened around the same time as
the personal data point in order to cue their recall of the
correct answer. Each component requires Cedric to write
code that dynamically aggregates, filters and processes data
from a multitude of data providers, not all of which are
natively present on Android (e.g., sensor history providers).

In implementing a question generator, Cedric creates an

Figure 4. Attribute constraint filters
select object that have descriptive or

meta-attributes that meet specifications.

Figure 5. Ontology constraint filters
select object that are linked to certain

ontology classes or any subclasses.

Figure 6. Relative filters select objects
that have a certain relationship with a

reference node.

abstract Question superclass that provides a basic structure
for each question he would like his application to support:
abstract class Question {
 abstract void findPersonalDataPoint()
 abstract String[] getAnswerChoices();
 abstract String[] getContextHints();
}

The methods of this abstract class correspond to the
aforementioned required components for each question.
Cedric’s task is to implement subclasses for each of the
eight question types he wants his application to support.
This process differs markedly with and without Epistenet.
To simplify the scenario, we take the question “What
website did you visit on {{time}}?” as an example. To
implement support for this question, Cedric creates the
class BrowserQuestion extends Question. The following
sections describe how Cedric will implement the methods
in BrowserQuestion both with and without Epistenet.

findPersonalDataPoint()
To implement the findPersonalDataPoint() method,
Cedric needs to find a personal data point that represents a
valid answer to a given question. For the BrowserQuestion,
an appropriate personal data point would be a record of any
website that Cedric visited. The name of the website in this
data point would be the answer to the question. Cedric also
needs to restrict the matching personal data point to one that
occurred between 3 and 24 hours ago so that users can
reasonably be expected to remember the answer but also so
that a shoulder surfer would not be able to guess the answer
based on a brief, momentary observation.

Using Epistenet
Cedric needs an EpistenetObject linked to the
“SiteVisited” ontology class with a timestamp within the
past 3 to 24 hours. He finds a personal data point that meets
all of these criteria with the getRandom method of the
Epistenet UQI, which takes a Filter object as an
argument and randomly selects one of the matching
EpistenetObjects to return. The Filter object Cedric
passes in is an intersect composite filter that intersects the
results of an ontology class filter that constrains objects to
those that have a link to the SiteVisited ontology class,
and a meta-attribute filter that constrains objects to those
that have a timestamp between 3 (highTime) and 24
(lowTime) hours ago. Thus, the entire process of finding an
appropriate personal data point is simply:
EpistenetObject fact = Epistenet.getRandom(
 Filter.constructOntologyClassFilter(
 OntologyClass.SiteVisited).intersectWith(
 Filter.constructTimeRangeFilter(
 lowTime, highTime));

Without Epistenet
Without Epistenet, in order to access data, Cedric needs to
understand the specifics of how and where data is stored.
This is where Cedric’s limited exposure to query languages
and databases becomes a hindrance. Indeed, to find a
personal data point to initialize the question, Cedric must

use Android’s default content provider API [28] to access
the user’s browser history by calling the query method of
the ContentResolver class. To access one random website
that the user visited between 3 (highTime) and 24 (lowTime)
hours ago with the standard content provider APIs, Cedric
writes the following:
Cursor c = mContext.getContentResolver().query(
 Browser.BOOKMARKS_URI,
 new String[] {
 Browser.BookmarkColumns.TITLE,
 Browser.BookmarkColumns.DATE
 },
 Browser.BookmarkColumns.DATE + " >= ? AND " +
 Browser.BookmarkColumns.DATE + " < ?",
 new String[] { lowTime, highTime},
 “RANDOM() LIMIT 1”);

The first argument to the query method is the “URI”
(location) for the content provider. This requires a change
in mental model: Cedric is no longer dealing with simple
Java code, but with a RESTful resource request—a
paradigm quite distinct from the rest of his application. This
mental model shift is likely to make him less efficient and
introduce more bugs in his code [13,14].

Next, Cedric passes in a String array of the database
“columns” he wants returned. In this case, he wants access
to the website title (which will ultimately be the answer to
the question) as well as the date (which will ultimately be
needed to fill in the question text, as well as to find
distractor answers and contextual hints). Then, for the third
and fourth arguments, Cedric must manually write and pass
in a SQL where clause in order to restrict the return values
to only those websites the user browsed in the last 3 to 24
hours. Finally, in order to select one random record out of
all the matching records, Cedric must write a SQL order by
and limit statement. In this case, he must order by the SQL
RANDOM() helper method to shuffle the records and then
LIMIT the query results to just the first.

The result of this entire query is a Cursor object that iterates

Figure 7: Example autobiographical authentication

questions. There are three components: (1) The
question asked. (2) The answers. (3) The hints.

over the rows and columns of matching database records.
Now, in order to extract the site title of the website as well
as time the user visited the website, Cedric must write the
following meticulous code:
String answerTitle; long answerTime;
if (c != null) {
 if (c.getCount() > 0) {
 c.moveToFirst();
 answerTitle = c.getString(c.getColumnIndex(
 Browser.BookmarkColumns.TITLE));
 answerTime = c.getLong(c.getColumnIndex(
 Browser.BookmarkColumns.DATE));
 }
 c.close();
}

This interleaving of SQL with Java boilerplate is messy and
requires Cedric to constantly switch between programming
mental models. Despite having limited exposure to
databases and query languages, Cedric must develop a
relatively deep understanding of database abstractions and
query languages to get something as simple as a website
visit. Furthermore, all of this code gets him only the web
history from the default browser on the user’s phone. If the
user has multiple web browsers, Cedric will have to (1)
enumerate all web browser history providers and (2) repeat
the process of querying for and extracting information from
each of these providers. Additionally, as each of these
providers will be in a different location and are likely to
have different schemas, relatively little of the code he has
written for the default web provider will generalize.

getAnswerChoices()
Next Cedric must implement getAnswerChoices(), which
should return an array including the correct answer and a
set of plausible but incorrect distractor answers. Distractor
answers should be ontologically similar to the “correct”
answer. So, if the “correct answer” is the name of a website
the user visited, distractor answers should also be the name
of websites the user might visit. Additionally, distractor
answers should not be reasonably confused with the correct
answer. For our running example, a bad distractor answer
would be the name of a website a user visited only five
minutes prior to when she visited the “correct” website.
Thus, Cedric needs to write code that finds semantically
similar “facts” that are far away, in time, from the original.

Using Epistenet
Cedric uses the Epistenet.getAttributeOf static method
of the UQI that takes in a Filter object and descriptive
attribute name, and returns the corresponding descriptive
attribute of all EpistenetObjects that match the Filter.
He uses the method Filter.constructRelativeTo method
to create a RelativeFilter that adds filter constraints
relative to a reference EpistenetObject (in this case, the
original fact). To specify the relationship that distractor
answers should have to the correct answer, Cedric uses two
builder methods of the Filter class:
lessThanTimestampWithOffset() (to only match
EpistenetObjects that occurred at least 6 hours prior) and

sameOntologyClass() (to only match EpistenetObjects
from the same ontology class). All Filter builder methods
return a reference to the modified Filter object, so Cedric
concisely chains these two calls. The resulting code is:
String[] distAns = Epistenet.getAttributeOf(
 Filter.constructRelativeTo(fact)
 .lessThanTimestampWithOffset(6*60*60*1000)
 .sameOntologyClass(), “website-title”);

Without Epistenet
The full implementation of this method without Epistenet is
too long to fully present. Indeed, for every web browser
history provider, Cedric has to write code similar to his
query in findPersonalDataPoint(), except the where
clause would have to written in relation to the answerTime
variable he extracted before and the “LIMIT 1” portion of
the order by clause should be omitted so that he can get
multiple matching records. Then, for each query response,
he would have manually iterate through rows as well as
columns in order to extract the relevant information (the
website title) and store it an a String array.
String[] distAns = new String[c.getCount()];
int counter = 0;
if (c != null) {
 if (c.getCount() > 0) {
 c.moveToFirst();
 while (!c.isAfterLast()) {
 distAns[counter++] = c.getString(c.getColumnIndex(
 Browser.BookmarkColumns.TITLE));
 c.moveToNext();
 }
 }
 c.close();
}

This code is redundant and error-prone, and again requires
Cedric to shift programming mental models. Moreover, this
code does not generalize across web browsers because each
browser can have a different database schema.

getContextHints()
Finally, Cedric must provide users with a set of contextual
hints to assist users if they have trouble answering the
question. For example, knowing that one was at the park
when browsing a website might trigger the memory of
something that the user read and, in turn, the name of the
site. Cedric decides that a good hint is anything that the user
did 10 minutes before or after visiting the “correct” website.
Using Epistenet
Relative queries are again perfectly suited to the task.
Cedric uses the object representing the correct answer,
stored in the fact variable, as the reference object. He
calls the withinTimeRange method of the RelativeFilter
class and passes in the value of 10 minutes in milliseconds,
indicating that he wants any fact that occurred in the 10
minute time period before or after the reference object.
EpistenetObject[] hints = Epistenet.get(
 Filter.constructRelativeTo(fact)
 .withinTimeRange(10*60*1000));
Cedric now has all personal data captured in the 10 minutes
surrounding the correct answer, regardless of the number

and type of personal data providers on the user’s phone. He
can use the same post-processing techniques he earlier
employed to render the hints to his users.

Without Epistenet
Again, the full implementation of this method without
Epistenet is far too long to fully present. Cedric must
compose schema-specific queries for each of the dozens of
personal data providers that could provide a hint in the
corresponding time period. Each of these queries on the
surface looks similar to the findFactAndInitialize()
method, but the specific content provider URIs, column
names, and constraints are specific to the provider. Post-
processing will again involve a cumbersome, error-prone
conversion of provider-specific table columns into a “hint”
String that will then be aggregated across all hint
providers. Despite little experience with databases, Cedric
must dive deep into this world in order to access the
personal data he needs.

Summary of Differences
To summarize, generating autobiographical authentication
questions requires accessing personal data that spans many
data providers and that relates to other personal data in
very specific ways (i.e., to create distractor answers and get
contextual hints). With Epistenet, the code required to
access the required this data is simple and concise because:
(1) Epistenet allows developers to query for personal data
based on meaning; (2) each personal data point is an index
into the larger knowledge graph; and, (3) Epistenet provides
a native query interface that developers can use without
switching programming mental models. But, without
Epistenet, doing the same requires hundreds of lines of
meticulous, error-prone code that is hard to generalize.

IMPLEMENTATION
We implemented a proof-of-concept version of Epistenet on
Android 4.0.41. Our implementation comprised of two
components. The first is an Android service that indexes
and organizes data in an ontology, as well as exposes an
interface to access the data through a standard Android
content provider. The second is an external JAR—
EpistenetJAR—that serves as a “query interface” that
developers can include in their Android applications to
query Epistenet on devices that have the Epistenet
application installed. EpistenetJAR itself is a lightweight
library and can be included into any Android application.
Note, however, that this is only a proof-of-concept
implementation of Epistenet to demonstrate its utility, so
specific implementation details are not critically important.
Ideally, Epistenet would be integrated into the OS so that a
separate application would not be necessary.

To construct the knowledge graph, we indexed many
system-level content providers and sensors. Specifically, we
indexed the content providers for the SMS inbox; the call

1 Open sourced at: https://github.com/scyrusk/epistenet.git

log; audio, video, and image media; web browser search
and visit history; and calendar. In addition, we created
content providers for the location and accelerometer
sensors, as well as for application use and installations.
These data providers were polled independently at regular
intervals through a background service. Motion sensor data
was retained if it occurred within a 3-second time window
of another data point. To support push notifications for
indexing data as they were created, we also created
BroadcastReceiver classes for new SMS messages, calls,
pictures, videos, and installed packages. A background
service also culled expired objects.

To avoid undermining Android permissions, data indexed
by Epistenet had its visibility meta-attribute set to the
default permissions required to access that data on Android.
For example, all objects contributed by the GPS sensor
have a visibility value of “ACCESS FINE LOCATION”—
the permission required by Android to access the GPS
sensor. In this way, Epistenet only returns data for which a
requesting application has permission to access. Notably,
we are not arguing that this is sufficient to guarantee that
no new privacy holes are created, only that we have taken
steps to mitigate the introduction of these holes. We discuss
privacy implications more thoroughly later.

OTHER DEMONSTRATIVE EXAMPLES
Personal Data Tracker & Information Management
Personal data trackers, like RescueTime [25] and Saga [29],
require access to collections of related personal data to
provide utility. Representative of these types of
applications, we created a lifelogging application that
shows users a chronological view of their day-to-day
lives—for example, where they were, who they contacted,
what applications they used and what websites they visited.

With Epistenet’s UQI, aggregating and filtering data
spanning many data providers is simple. We displayed a list
of dates that users could tap to get information about their
activities on that date. For any date that a user clicked on,
we simply queried Epistenet with a meta-constraint filter
that constrained the timestamp of matching Epistenet
objects to the selected 24-hour period.
long millisDay = 24*60*60*1000;
Epistenet.get(Filter.constructTimeRangeFilter(
 now – daysAgo*millisDay,
 now – (daysAgo - 1)*millisDay));

Notably, the code remains the same irrespective of the
number personal data providers on the phone. Furthermore,
without writing any complex code to “listen” to location
pings and application usage events, we are able to show
users where they were for the past few weeks. To make the
application interactive, we allowed users to click on any
rendered fact to find other similar facts that occurred in the
past two weeks. For example, if the user clicked on a phone
call with her contact John, she would see every other phone
call she had with John in the previous 2 weeks. With
relative queries, implementing this functionality was as
simple as the following snippet:

Epistenet.get(Filter.constructRelativeTo(choice)
 .sameOntologyClass()
 .sameDescriptiveAttribute(“contact”)
 .withinTimeRange(2*7*24*60*60*1000));

Closeness Ordered Contact List
Another common use for personal data is to customize
application experiences. For example, Cover [23] uses
personal data to predict what applications a user is likely to
use and reorders those predictions to make them easier to
launch. Accordingly, we made an app that reorders contacts
based on how frequently they communicate with the user.
The challenge here is that communication comes in many
forms—for example, through e-mail, social media, or phone
calls. With Epistenet’s ontology, it is easy to access all
communications and group them by a common attribute.
Map<String, EpistenetObject[]> comms =
 Epistenet.getAndGroupResultsBy(
 Filter.constructOntologyClassFilter(
 OntologyClass.Communication),
 “partner”);
The comms variable now contains a Map with keys pertaining
to the “partner” descriptive attribute, and values
containing all objects linked to the “Communication”
ontology class with the partner descriptive attribute equal
to the corresponding key. So, to present a user with a
frequency-ordered contact list, we need only rearrange the
keys (i.e., names of contacts) of the comms Map to be in
descending order of the length of its values (i.e., an array of
EpistenetObjects representing communications with a
given contact), and then show the ordered keys to the user.

If This Then That
Applications that use personal data conditions to “trigger”
functionality are also common. For example, applications
like If This Then That [30] allow end-users to specify
“recipes” of what they would like to happen if certain
conditions are met—for example, if a user contacts
someone five times in a week, then “favorite” that contact.

Recipe triggers, which are just union or intersection of
many different conditions, nicely map to Epistenet’s filter
compositions. For example, consider the recipe: if the user
has not been back home in the past week, then notify the
user that he should call home. Checking if the trigger has
been met requires a simple composition of three filters:
boolean wasHome = !Epistenet.any(
 Filter.constructOntologyClassFilter(
 OntologyClass.LocationReading)
 .intersectWith(
 Filter.constructAttributeEqualsFilter(
 “location-name”, “home”)
 .intersectWith(
 Filter.constructTimeRangeFilter(
 now - 7*24*60*60*1000, now));
If no matching objects were found, then the Epistenet.any
method will return false and wasHome will be set to true.

DISCUSSION & POTENTIAL LIMITATIONS
Query Performance. One concern is whether Epistenet has
acceptable query performance. To evaluate query
performance, we enumerated 11 data querying tasks

required by both the autobiographical authentication demo
(e.g., to find a matching personal data point for the question
“Who did you SMS at {{time}}?”) and the personal data
tracker demo (e.g., everything the user did in a 24 hour
period). We implemented both an Epistenet and non-
Epistenet version of these tasks. All of these tasks required
querying multiple data sources.

We simulated each querying task across six different values
of the total number of data points available: 100, 500, 1000,
2000, 4000, and 8000 data points. We ran each task 100
times at each value of total data points for both the
Epistenet and non-Epistenet implementations. Figure 8
shows the results. As is expected, Epistenet is often faster
than the default Android content providers, though its
runtime, expectedly, does linearly increase with the number
of indexed objects. Perhaps most telling, though, is that all
queries, both Epistenet and non-Epistenet, took fewer than
200 milliseconds to run. Thus, query performance does not
appear to be a large concern for Epistenet. We also believe
that implementation changes can improve performance.

Battery Consumption. Epistenet takes a small toll on
battery life, however exactly how much should vary
markedly across hardware, a user’s activity level, and the
existing applications on a phone [31]. Anecdotally, on a test
phone (Samsung Galaxy S3) running Epistenet for several
weeks, Epistenet did not drain battery life to a point where
the phone needed to be charged more than once per day.

Privacy. While we have taken steps to avoid undermining
Android permissions, our approach does not address all
privacy issues. For example, Android does not presently
have a permission affording applications a recent history of
location readings—only from the point of installation. In its
ideal form, Epistenet’s host system would have permissions
for all data accessible through it. But, there is a broader
privacy issue: By making it easier for developers to create
more powerful personal data apps, we also make it easier
for developers to violate end-user privacy. As prior work
points out [15], this is a conundrum in ubiquitous
computing—the same sensors and logs that allow us to
create data rich, context-aware, personal data applications

Figure 8: Execution time (in milliseconds) comparison

across all tasks for both Epistenet and the default android
content providers, with 95% confidence intervals.

can also be used to create a privacy-invasive surveillance
infrastructure. We acknowledge that this is a sensitive
problem, but believe it to be broader than Epistenet.

CONCLUSION
Presently, developing compelling personal data applications
on mobile platforms is difficult because: personal data is
stored in isolated silos, thus suppressing relationships
between data from different providers; interfaces to these
data are inconsistent and force developers to query for data
based on source-of-origin rather than meaning; and,
developers are forced to interleave multiple programming
abstractions to construct even simple queries, resulting in
error-prone, un-generalizable data processing pipelines. To
address these challenges, we implemented and evaluated
Epistenet: an architecture that facilitates the programmatic
access and processing of semantically related personal data.
In short, Epistenet constructs and maintains a knowledge
graph that structures mobile personal data by meaning and
provides a native, unified query interface to access
subgraphs of this data. We argue that this represents a
promising first step in creating a solution that facilitates the
development of intelligent smartphone applications built on
rich, semantically interrelated personal data.

ACKNOWLEDGEMENTS
We thank Michael Villena, Barath Chandrashekar, and our
reviewers for their helpful feedback.

REFERENCES
1. P. Bonnet, J. Gehrke, and P. Seshadri. 2000. Querying

the physical world. IEEE Personal Communications 7,
5: 10–15. http://doi.org/10.1109/98.878531

2. Philippe Bonnet, Johannes Gehrke, and Praveen
Seshadri. 2001. Towards Sensor Database Systems.
Proc. MDM’01, 3–14.

3. Carlo Curino, Matteo Giani, Marco Giorgetta,
Alessandro Giusti, Amy L Murphy, and Gian Pietro
Picco. 2005. Mobile Data Collection in Sensor
Networks : The TinyLime Middleware. Elsevier
Pervasive and Mobile Computing Journal 4: 446–469.

4. Mathieu d’Aquin, Andriy Nikolov, and Enrico Motta.
2011. Building SPARQL-Enabled Applications with
Android devices. Proc. ISWC'11.

5. Sauvik Das, LaToya Green, Beatrice Perez, Michael
Murphy, and Adrian Perrig. 2010. Detecting User
Activities Using the Accelerometer on Android
Smartphones. TRUST-REU Tech Reports

6. Sauvik Das, Eiji Hayashi, and Jason Hong. 2013.
Exploring Capturable Everyday Memory for
Autobiographical Authentication. Proc. UbiComp’13.

7. Jerome David and Jerome Euzenat. 2010. Linked data
from your pocket . Proc. ISWC'10 Demo Track.

8. Anind K. Dey. 2001. Understanding and Using
Context. Personal and Ubiq. Computing 5, 1: 4–7.

9. Eric Freeman and David Gelernter. 1996. Lifestreams.
ACM SIGMOD Record 25, 1: 80–86.

10. David Gelernter. 1985. Generative communication in
Linda. ACM TOPLAS 7, 1: 80–112.

11. Alina Hang, Alexander De Luca, and Heinrich
Hussman. 2015. I Know What You Did Last Week! Do
You? Dynamic Security Questions for Fallback
Authentication on Smartphones. Proc. CHI’15.

12. A. M. Khan, Y.-K. Lee, S. Y. Lee, and T.-S. Kim.
2010. Human Activity Recognition via an
Accelerometer-Enabled-Smartphone Using Kernel
Discriminant Analysis. Proc. FIT'10, 1–6.

13. Andy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004.
Six Learning Barriers in End-User Programming
Systems. Proc. VLHCC'04, 199–206.

14. Andy J. Ko and Brad A. Myers. 2003. Development
and evaluation of a model of programming errors.
Proc. HCC'03, 7–14.

15. Marc Langheinrich. 2001. Privacy by Design -
Principles of Privacy-Aware Ubiquitous Systems.
Proc. Ubicomp’01, 273–291.

16. Danh Le-Phuoc, Josiane Xavier Parreira, Vinny
Reynolds, and Manfred Hauswirth. 2010. RDF on the
go: An RDF storage and query processor for mobile
devices. Proc. CEUR Workshops 658: 149–152.

17. Samuel Madden, Michael J Franklin, Joseph M
Hellerstein, and Wei Hong. 2003. The design of an
acquisitional query processor for sensor networks.
Proc. SIGMOD ’03, ACM Press, 491–502.

18. E Miller. 1998. An Introduction to the Resource
Description Framework. D-Lib Magazine.

19. Suman Nath. 2012. ACE. Proc. MobiSys'12, ACM
Press, 29–42.

20. Natalya F Noy and Deborah L Mcguinness. 2000.
Ontology Development 101 : A Guide to Creating
Your First Ontology. SKSL Technical Report KSL-01-
05, 1–25.

21. H. Tangmunarunkit, J. Kang, Z. Khalapyan, et al.
2015. Ohmage. ACM Transactions on Intelligent
Systems and Technology 6, 3: 1–21.

22. Roberto Yus, Carlos Bobed, Guillermo Esteban, and
Fernando Bobillo. 2013. Android goes Semantic : DL
Reasoners on Smartphones.

23. Cover Lock Screen. Retrieved from
https://play.google.com/store/apps/details?id=com.cove
rscreen.cover&hl=en

24. Yahoo Aviate Launcher. Retrieved from
https://play.google.com/store/apps/details?id=com.tul.a
viate&hl=en

25. RescueTime. Retrieved from https://rescuetime.com
26. Moves App. Retrieved from https://moves-app.com
27. SPARQL. Retrieved from

http://www.w3.org/2009/sparql/wiki/Main_Page
28. Content Provider. Retrieved from

http://developer.android.com/guide/topics/providers/co
ntent-providers.html

29. SAGA. Retrieved from http://www.getsaga.com
30. If This Then That. Retrieved from https://ifttt.com
31. Power Profile for Android. Retrieved from

https://source.android.com/devices/tech/power.html

