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ABSTRACT 
Effective use of personal data is a core utility of modern 
smartphones. On Android, several challenges make 
developing compelling personal data applications difficult. 
First, personal data is stored in isolated silos. Thus, 
relationships between data from different providers are 
missing, data must be queried by source of origin rather 
than meaning and the persistence of different types of data 
differ greatly. Second, interfaces to these data are 
inconsistent and complex. In turn, developers are forced to 
interleave SQL with Java boilerplate, resulting in error-
prone code that does not generalize. Our solution is 
Epistenet: a toolkit that (1) unifies the storage and treatment 
of mobile personal data; (2) preserves relationships between 
disparate data; (3) allows for expressive queries based on 
the meaning of data rather than its source of origin (e.g., 
one can query for all communications with John while at 
the park); and, (4) provides a simple, native query interface 
to facilitate development. 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
The promise of intelligent and personalized experiences 
motivates many of the most compelling smartphone 
application concepts. Intelligent assistants such as Siri, 
Google Now, and Cortana present their users with relevant 
information based on past behavior. Application launchers 
like Cover [23] and Aviate [24] predict what applications a 
user will use in different contexts to make them easier to 
launch. Logging applications like RescueTime [25] and 
Moves [26] let users collect and reflect on their own 
personal behavior. And, looking ahead, researchers 
envision other exciting personal data apps for domains such 
as health monitoring and ubiquitous smart environments. 

An essential component for each of these applications is 
access to the rich archives of personal data stored by 
smartphones. Today, smartphones chronicle many of our 
everyday experiences ranging from our virtual interactions, 
such as our communication behavior and application usage, 
to our physical state, such as our location and physical 
activities [5,12]. As we delve further into the age of the 
Internet of Things, the breadth, fidelity and richness of the 
personal data available can only be expected to grow. 
However, at a time when distributing mobile applications is 
easier than ever before, several problems make developing 
personal data applications unnecessarily challenging. 

First, personal data is stored in isolated silos. Accordingly, 
relationships between data from different providers are 
hidden—e.g., there is no link between the fact that a user 
was at the park and that she also played Angry Birds at 
4:00pm. Consequently, while the most impressive personal 
data applications are those that make intelligent inferences 
on interconnections between data—e.g., predicting which 
emails a user would like to access based on who she just 
called or automatically logging one’s activities during her 
visit to the park—accessing and making sense of these data 
interconnections is needlessly difficult. 

Another problem is that personal data must be accessed by 
source-of-origin rather than meaning. This results in messy, 
un-generalizable data querying pipelines for aggregating 
semantically related data. For example, an application that 
tries to calculate relationship strength based on a user’s 
communications with her contacts would not be able to 
simply query for the user’s “communications”—it would 
have to separately query the call log, then the SMS inbox, 
and then any other third-party communication applications 
and interface with these data providers independently. 

Yet another issue is the marked disparity in personal data 
persistence across different data providers. Consider, for 
example, the fact that call log data stretches back years yet 
GPS readings do not stretch back even seconds. While all 
of this data is enmeshed in a broader web of meaning, much 
of this meaning is lost simply because some data is sensed 
while other data is logged. 

A final problem is programming complexity. Presently, 
interfacing with multiple personal data providers requires 
developers to interleave different programming patterns—a 
proven cause of programming errors [13,14]. For instance, 
on Android, to access personal log data (e.g., call logs and 
browser history), one needs knowledge of databases, SQL 
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and Java iterator patterns to construct queries and process 
their results. In contrast, to access personal sensor data 
(e.g., accelerometer readings), one needs knowledge of 
sensor life cycles and event-based programming. Thus, the 
data acquisition and processing pipeline is cumbersome and 
error-prone even for experienced developers. 

To address these issues, we propose Epistenet—a tool that 
semantically structures mobile personal data and offers a 
unified query interface to facilitate accessing semantically 
related personal data. Epistenet affords developers the 
ability to query for (1) data based on meaning, not source of 
origin; (2) data related to other, given data points, 
irrespective of data provider; and (3) histories of sensor 
data for a short period before and after other personal data 
points. Example queries include all communications (spans 
multiple data sources), all application usage in the last day 
(data that would not otherwise be accessible), or web 
searches that occurred within 5 minutes of this phone call 
(spans multiple data sources; relative to other data). In 
short, Epistenet lowers the complexity of accessing and 
processing related personal data, and broadens the scope of 
personal data that can be accessed with simple queries. 

We offer the following novel contributions: (1) the design 
of Epistenet—including an ontology to organize personal 
data on mobile platforms in a knowledge graph, a native 
query interface that facilitates the retrieval of semantically 
related personal data, and data providers that afford 
developers histories of sensed information surrounding 
other personal data points; (2) an open-sourced proof-of-
concept implementation of Epistenet for Android; (3) 
demonstrations of the utility and versatility of Epistenet 
through the creation of example applications; and, (4) a 
performance comparison of personal data querying tasks 
with and without Epistenet. 

RELATED WORK 
Epistenet is, in many ways, a deliberate refinement and 
extension of known ideas to a modern context. For 
example, the observation that data are more useful when 
relatable than when isolated is, alone, not novel. Harkening 
back to the Semantic Web, there has been a tradition of 
work aiming to break data out of their isolated siloes and 
into unified, semantically organized representations. The 
Resource Description Framework (RDF), for example, is a 
general metadata framework designed to be a knowledge 
representation mechanism for all web data [18]. Relatedly, 
SPARQL is a query language developed to query data 
encoded in RDF [27]. We note, of course, that there have 
been a number of efforts to port RDF and SPARQL clients 
to mobile platforms [4,7,16,22]. RDF and SPARQL alone, 
however, are not a solution to the problem of siloed data 
architectures: Rather, they enable potential solutions.  

Yet, despite the continuing and formidable efforts of the 
semantic technologies community, we continue to see 
siloed data architectures on mobile platforms. This is not 
because designers of modern mobile architectures are 

ignorant of semantic technologies. Instead, we argue that 
semantic technologies have yet to see widespread use on 
mobile platforms because, alone, they do not provide a full 
solution that both: organizes personal data in a manner 
meaningful to the mobile personal data context and that 
facilitates the querying of this data in a manner that is 
simple for mainstream developers. 

Epistenet builds on prior work in semantic technologies in 
that its goal is to organize data by meaning rather than 
source of origin. However, it differs in that it is architected 
specifically for the purpose of integrating, organizing and 
facilitating access to personal data specifically in the 
mobile context. Furthermore, it a full solution—rather than 
advocating the use of newly proposed standards and query 
languages, we provide an architecture that structures mobile 
personal data and exposes a native, unified interface to 
query and filter this data.  

Epistenet is also related to prior work from other subfields. 
Indeed, prior work in sensor networks has tackled the 
related problem of consolidating information from multiple 
sensors. Researchers have proposed a number of solutions 
related to the storage [2,3], representation [3,10], and 
querying of data aggregated from raw sensor streams 
[1,17]. Sensor networks commonly represent data as 
schemaless tuple spaces [10], or collections of values 
concatenated as individual elements of a tuple [3]. These 
representations are terse, but can be difficult for application 
developers to work with. Generally, Epistenet varies from 
efforts in the sensor network literature in its scope (i.e., in 
semantically organizing personal data) and purpose (i.e., to 
simplify personal data application development). 

Other work, e.g., Ohmage [21] and Lifestreams [9], has 
looked specifically at the problem of aggregating personal 
data, though these aggregators have typically focused 
directly on end-user use cases. For example, getting people 
to label personal data collections so that they can make 
sense of their personal data later, or constructing 
workspaces with relevant personal data. Epistenet differs 
from this work in that it is focused on making it easier for 
developers to create personal data applications that require 
access to semantically related data. In this way, we believe 
Epistenet is a tool that could be used to create systems like 
Ohmage and Lifestreams. Similarly, others have developed 
middleware solutions for efficient context extraction on 
smartphones [8,19]. Notably, Epistenet is not a context 
extraction or inference application; rather, it is a tool that 
should make data acquisition for these applications easier. 

EPISTENET SYSTEM OVERVIEW  
To reiterate, our goal with Epistenet is to facilitate the 
retrieval and processing of semantically related personal 
data, as these data afford developers the richest 
opportunities to create compelling apps. By personal data, 
we mean data about the user. So, Epistenet should index 
that the user sent an SMS to her friend, John, but not the 
phone’s network connectivity when the message was sent. 



By facilitating access to semantically related data, we mean 
that Epistenet should make it easy to access both individual 
data points and the whole web of interconnections between 
data points. A personal data point is just one isolated datum 
about the user—for example, that the user sent an SMS 
message. But, that single data point is far less interesting 
than the subgraph of related data in which it is embedded—
e.g., that the message was sent to Dad, while the user was at 
the park, and shortly after she called Mom. The isolated 
datum has little use alone, while the subgraph allows 
developers to create smart application launchers like Cover 
[23]. Presently, it is easy to get the datum but impossible to 
get the subgraph without manually constructing the links 
between data with every query.  
With Epistenet, an individual data point should be an index 
into the larger graph of personal data, and queries should 
make it easy to retrieve subgraphs of related personal data. 
Finally, by facilitating the processing of personal data, we 
mean that developers should be able to easily use the data 
they access. Presently, developers need to manually 
interleave SQL expressions with Java boilerplate to retrieve 
data, iterate through database records to process data, and 
understand database abstractions to modify data. 
Furthermore, they must do this separately for every data 
provider. Epistenet should provide native representations of 
personal data nodes, from any provider, that developers can 
process and manipulate as they would any other object.  
To accomplish our goal, Epistenet (1) constructs and 
maintains a knowledge graph of smartphone personal data, 
and (2) provides a unified query interface that allows 
developers to query for subgraphs of the knowledge graph. 
Figures 1-2 illustrate how the knowledge graph changes the 
organization of mobile personal data.  

Knowledge Graph  
In the Epistenet knowledge graph, each personal data point 
is an object, contributed by a data provider and 
semantically organized into an ontology. 

Objects  
In Epistenet, objects are atomic units of personal data—for 
example, a phone call, a website visit, or a location ping. 

Objects have three components: descriptive attributes, 
meta-attributes, and a link to at least one ontology class.  

Descriptive attributes are key-value pairs of the core 
information encapsulated by an object. For example, a 
phone call might have four descriptive attributes: the 
communication partner(s), the duration of the call, the 
directionality of the call (outgoing or incoming), and 
whether or not it was answered. Meta attributes store 
information about the object. Each object has at least the 
four meta attributes—timestamp: when it was added; 
persistence: how long it should remain until being culled; 
visibility: the permissions required to see the object; and, 
provider: the provider that contributed the object. 

Ontology class links serve two purposes. First, they “type” 
an object because an object must have the descriptive and 
meta attributes required by any ontology class to which it is 
linked. For example, objects linked to an ontology class 
describing website visits should have the website name and 
URL as descriptive attributes and the referring website as a 
meta attribute. Second, they organize objects into an 
information hierarchy—for example, objects about phone 
calls and SMS messages are both under “Communication”. 

A benefit of abstracting personal data points into “objects” 
is that they map nicely onto object-oriented programming 
objects. Consequently, with Epistenet, processing personal 
data points is the same as processing any other native object 
as opposed to the rows and columns of database records. 

Ontology  
The Epistenet ontology is a key enabler of much of its core 
functionality and is an adaptation of ideas from RDF 
applied to the mobile context. The ontology organizes 
objects so that data is structured by meaning rather than 
source of origin. It is composed of a set of ontology classes 
that are arranged hierarchically through subsumption (is-a) 
relationships and have links to objects—e.g., an 
accelerometer reading is a motion sensor reading.  

 
Figure 2: With Epistenet, personal data is stored and 

semantically structured in a knowledge graph. 
Relationships between data are exposed, and 
developers need only interface with one API. 

 
Figure 1: Without Epistenet, personal data is stored 

in silos. Developers must manually interface with 
each data provider, and relationships are hidden. 



This semantic organization, when paired with Epistenet’s 
unified query interface, affords the retrieval of entire 
subgraphs of related personal data. Indeed, we can access 
semantically related data by querying for objects linked to a 
shared top-level ontology class—e.g., we can find all data 
contributed by motion sensors, such as the accelerometer 
and the gyroscope, by querying Epistenet for objects with a 
link to the “MotionSensor” class and any class it subsumes.  

An additional benefit of organizing data by meaning rather 
than source of origin is that developers need not care about 
how many data providers produce related data—they 
simply need to query for what data they want, not from 
where they want it. For example, consider the popular 
RescueTime app that logs how a user spends her time [25]. 
Without Epistenet, to count how much time a user spends 
browsing the web, a developer would need to independently 
query every web browser the user has installed on her 
phone—and this could vary widely across users. With 
Epistenet, data from all of those clients will be semantically 
structured under the same “SiteVisited” ontology class. 
Similarly, even if the user installs a new or deletes an old 
browser, the query to get browsing history need not change.  

We constructed an initial, example ontology that organizes 
much of the personal data provided by default Android 
sensors and content providers (see Figure 3). To do so, we 
first enumerated all system-level (i.e., non-third-party) data 
providers found on modern Android phones. Then, we 
collaboratively and iteratively synthesized these data 
providers into hierarchical clusters [20]. While this 
ontology can be easily extended or replaced, it is sufficient 
for our proof-of-concept implementation of Epistenet. 

Data Providers  
Data providers produce personal data in the form of objects. 
Data providers can provide data in two ways: they can 
either push objects to Epistenet as new data are created, or 
Epistenet can pull data from them at regular intervals. 
Epistenet can aggregate information from arbitrarily many 

data providers—for example, system content providers such 
as SMS logs or hardware sensors such as the accelerometer. 

Another contribution of Epistenet is that it offers new data 
providers that store short histories of sensor and usage 
data—e.g., a user’s location for the past week, a 3-second 
window of motion data surrounding a phone call, and 
application usage logs. We wrote these providers to bridge 
the disparity of data persistence between sensor and log 
data. Both sensors and logs capture rich personal data, so 
there is no reason for call logs to stretch back years but for 
sensor data to not stretch back even seconds.  

Consider the popular Moves app [26] that chronicles users’ 
daily physical activities and location traces. Without 
Epistenet, developers need to manually store and associate 
location and motion sensor information. Furthermore, they 
would not be able to access this data prior to the user 
installing their application, and thus the application would 
initially offer no utility. With Epistenet, developers can 
access brief histories of location and related motion sensor 
information, even from before install-time, and would thus 
be able to immediately provide utility. These novel 
providers also eliminate the need for multiple applications 
to redundantly store histories of sensor information. 

Graph Maintenance 
Finally, to be mindful of the limited storage capacities of 
present-day mobile devices, the knowledge graph regularly 
culls personal data objects that have expired persistence 
fields. These persistence fields are initially set by 
contributing data providers, but can be overridden if the 
graph starts to overflow beyond a configurable, hard limit. 

Unified Query Interface  
The design and construction of the knowledge graph solves 
the problems of breaking personal data out of isolated 
siloes, as well as bridging the disparity of persistence 
between sensed and logged data. To address the remaining 
problems of reducing the programming complexity of 
accessing personal data and allowing query construction 
through meaning rather than source-of-origin, Epistenet 
provides a native unified query interface (UQI). The UQI is 
a single-point of entry that allows developers to all personal 
data stored in the knowledge graph, regardless of its source. 
Furthermore, the UQI allows developers to specify these 
queries with native code and also returns native objects. 

Filters 
Developers specify personal data queries with filters. 
Conceptually, filters are sieves that separate desirable 
objects from the rest of the knowledge graph. For example, 
an ontology-class filter could select objects that are linked 
to the “Person” class. Generally, filters can constrain any 
part of an object: its ontological links, descriptive attributes, 
meta-attributes or its relationship with other objects. To 
constrain one or many attributes of an object, a filter is 
given a set of attribute constraints—key-value pairs of 
attribute names mapped to an acceptable list of values. 

 
Figure 3: Default Epistenet ontology for smartphone 
personal data. Edges represent “is-a” relationships. 



Available attribute constraints include greater/less than, 
equals, in set, out of set and regex matching. 

Filters can also be composited together to create more 
powerful relational queries. There are three filter 
composition operators in Epistenet that follow their 
standard definitions: union (return objects from both 
filters), intersect (return only objects in both filters), and 
except (return all objects in either, but not both, filters).  

One of Epistenet’s most powerful features is that filters can 
be created relative to any personal data point. In other 
words, each object acts as an index into the larger 
knowledge graph. These relative filters allow developers to 
expand from any given data point to a meaningful subgraph 
of the knowledge graph. For example, after retrieving a set 
of phone calls, it becomes trivial to access, for example, all 
locations a user visited 30 minutes before those phone calls.   

While Epistenet filters may not be exciting in isolation, 
when used in tandem with Epistenet’s knowledge graph, 
they make for a simple, powerful tool to surface complex 
relationships between personal data points. Figures 4-6 
graphically depict how Epistenet’s filters work.  

Native APIs to Access, Process and Update Personal Data  
Another feature of the UQI is that it is fully native. In our 
Android implementation, queries are specified in Java and 
return Java objects that represent their corresponding 
Epistenet objects. Accordingly, accessing, processing and 
updating personal data requires no knowledge of databases 
or query languages. This ensures that data accessing and 
processing pipelines are generalizable and robust (because 
they are not tied to particular database schemas and URIs) 
in addition to being simpler to use (as developers do not 
need to shift programming mental models nor do they need 
to coordinate between different interfaces).  

Summary of Key Features 
To summarize, Epistenet is an immediately usable full-
stack solution that organizes, unifies and facilitates access 
to mobile personal data as well as bridges the disparity in 
treatment and persistence between sensed and logged 
personal data. To do so, Epistenet offers the following four 
key features: (1) Epistenet semantically organizes personal 
data in a knowledge graph; (2) Epistenet filters allow 
developers to access personal data by their meaning and 

relationships with other personal data rather than their 
source of origin; (3) Epistenet provides historical sensor 
and application usage information for a brief time window 
around other personal data points; and, (4) Epistenet 
provides a native unified query interface (UQI) for 
developers to retrieve, process and/or update any personal 
data in the knowledge graph. 

USAGE SCENARIO  
The following scenario demonstrates how Epistenet helps 
Android developers address the many challenges in creating 
personal data applications—specifically those that require 
accessing sets of interrelated personal data. This scenario 
describes the development of an autobiographical 
authenticator: A form of authentication based on asking 
people questions about their day-to-day experiences that 
has been of increasing interest to researchers in recent years 
[6,11]. Semantically interconnected personal data is core to 
autobiographical authentication.   

The developer in this scenario is Cedric, a young man who 
has experience with Java and creating user-facing Android 
apps, but has little experience with databases. Cedric is 
building an autobiographical authenticator akin to the one 
proposed by Das et al. [6]. His application will ask end-
users a number of multiple-choice questions, with each 
question corresponding to a fact in the user’s everyday 
experiences captured by their smartphones. Example 
questions the application should ask include “Who did you 
SMS message on Sunday, May 22nd, at around 9:40pm?”, 
“Where were you on Monday, May 23rd, at around 1pm?” 
and “What website did you visit on Tuesday, May 24th, at 
around 3pm?”. Figure 7 shows a screenshot of the final app.  

Every question asked consists of three components: a 
personal data point that contains an answer to a question, a 
set of answer choices from which the user must select the 
correct answer, and a set of contextual hints that gives users 
hints of other things that happened around the same time as 
the personal data point in order to cue their recall of the 
correct answer. Each component requires Cedric to write 
code that dynamically aggregates, filters and processes data 
from a multitude of data providers, not all of which are 
natively present on Android (e.g., sensor history providers).  

In implementing a question generator, Cedric creates an 

   

Figure 4. Attribute constraint filters 
select object that have descriptive or 

meta-attributes that meet specifications. 

Figure 5. Ontology constraint filters 
select object that are linked to certain 

ontology classes or any subclasses. 

Figure 6. Relative filters select objects 
that have a certain relationship with a 

reference node. 
 



abstract Question superclass that provides a basic structure 
for each question he would like his application to support: 
abstract class Question { 
  abstract void findPersonalDataPoint() 
  abstract String[] getAnswerChoices(); 
  abstract String[] getContextHints(); 
} 

The methods of this abstract class correspond to the 
aforementioned required components for each question. 
Cedric’s task is to implement subclasses for each of the 
eight question types he wants his application to support. 
This process differs markedly with and without Epistenet. 
To simplify the scenario, we take the question “What 
website did you visit on {{time}}?” as an example. To 
implement support for this question, Cedric creates the 
class BrowserQuestion extends Question. The following 
sections describe how Cedric will implement the methods 
in BrowserQuestion both with and without Epistenet. 

findPersonalDataPoint() 
To implement the findPersonalDataPoint() method, 
Cedric needs to find a personal data point that represents a 
valid answer to a given question. For the BrowserQuestion, 
an appropriate personal data point would be a record of any 
website that Cedric visited. The name of the website in this 
data point would be the answer to the question.  Cedric also 
needs to restrict the matching personal data point to one that 
occurred between 3 and 24 hours ago so that users can 
reasonably be expected to remember the answer but also so 
that a shoulder surfer would not be able to guess the answer 
based on a brief, momentary observation. 

Using Epistenet  
Cedric needs an EpistenetObject linked to the 
“SiteVisited” ontology class with a timestamp within the 
past 3 to 24 hours. He finds a personal data point that meets 
all of these criteria with the getRandom method of the 
Epistenet UQI, which takes a Filter object as an 
argument and randomly selects one of the matching 
EpistenetObjects to return. The Filter object Cedric 
passes in is an intersect composite filter that intersects the 
results of an ontology class filter that constrains objects to 
those that have a link to the SiteVisited ontology class, 
and a meta-attribute filter that constrains objects to those 
that have a timestamp between 3 (highTime) and 24 
(lowTime) hours ago. Thus, the entire process of finding an 
appropriate personal data point is simply:  
EpistenetObject fact = Epistenet.getRandom( 
  Filter.constructOntologyClassFilter( 
    OntologyClass.SiteVisited).intersectWith( 
      Filter.constructTimeRangeFilter( 
         lowTime, highTime)); 

Without Epistenet  
Without Epistenet, in order to access data, Cedric needs to 
understand the specifics of how and where data is stored. 
This is where Cedric’s limited exposure to query languages 
and databases becomes a hindrance. Indeed, to find a 
personal data point to initialize the question, Cedric must 

use Android’s default content provider API [28] to access 
the user’s browser history by calling the query method of 
the ContentResolver class. To access one random website 
that the user visited between 3 (highTime) and 24 (lowTime) 
hours ago with the standard content provider APIs, Cedric 
writes the following: 
Cursor c = mContext.getContentResolver().query( 
  Browser.BOOKMARKS_URI, 
  new String[] { 
    Browser.BookmarkColumns.TITLE,  
    Browser.BookmarkColumns.DATE 
  }, 
  Browser.BookmarkColumns.DATE + " >= ? AND " + 
  Browser.BookmarkColumns.DATE + " < ?", 
  new String[] { lowTime, highTime}, 
  “RANDOM() LIMIT 1”); 

The first argument to the query method is the “URI” 
(location) for the content provider. This requires a change 
in mental model: Cedric is no longer dealing with simple 
Java code, but with a RESTful resource request—a 
paradigm quite distinct from the rest of his application. This 
mental model shift is likely to make him less efficient and 
introduce more bugs in his code [13,14]. 

Next, Cedric passes in a String array of the database 
“columns” he wants returned. In this case, he wants access 
to the website title (which will ultimately be the answer to 
the question) as well as the date (which will ultimately be 
needed to fill in the question text, as well as to find 
distractor answers and contextual hints). Then, for the third 
and fourth arguments, Cedric must manually write and pass 
in a SQL where clause in order to restrict the return values 
to only those websites the user browsed in the last 3 to 24 
hours. Finally, in order to select one random record out of 
all the matching records, Cedric must write a SQL order by 
and limit statement. In this case, he must order by the SQL 
RANDOM() helper method to shuffle the records and then 
LIMIT the query results to just the first. 

The result of this entire query is a Cursor object that iterates 

 
Figure 7: Example autobiographical authentication 

questions. There are three components: (1) The 
question asked. (2) The answers. (3) The hints. 

 



over the rows and columns of matching database records. 
Now, in order to extract the site title of the website as well 
as time the user visited the website, Cedric must write the 
following meticulous code: 
String answerTitle; long answerTime; 
if (c != null) { 
  if (c.getCount() > 0) { 
    c.moveToFirst(); 
    answerTitle = c.getString(c.getColumnIndex( 
      Browser.BookmarkColumns.TITLE)); 
    answerTime = c.getLong(c.getColumnIndex( 
      Browser.BookmarkColumns.DATE)); 
  } 
  c.close(); 
} 

This interleaving of SQL with Java boilerplate is messy and 
requires Cedric to constantly switch between programming 
mental models. Despite having limited exposure to 
databases and query languages, Cedric must develop a 
relatively deep understanding of database abstractions and 
query languages to get something as simple as a website 
visit. Furthermore, all of this code gets him only the web 
history from the default browser on the user’s phone. If the 
user has multiple web browsers, Cedric will have to (1) 
enumerate all web browser history providers and (2) repeat 
the process of querying for and extracting information from 
each of these providers. Additionally, as each of these 
providers will be in a different location and are likely to 
have different schemas, relatively little of the code he has 
written for the default web provider will generalize. 

getAnswerChoices() 
Next Cedric must implement getAnswerChoices(), which 
should return an array including the correct answer and a 
set of plausible but incorrect distractor answers. Distractor 
answers should be ontologically similar to the “correct” 
answer. So, if the “correct answer” is the name of a website 
the user visited, distractor answers should also be the name 
of websites the user might visit. Additionally, distractor 
answers should not be reasonably confused with the correct 
answer. For our running example, a bad distractor answer 
would be the name of a website a user visited only five 
minutes prior to when she visited the “correct” website. 
Thus, Cedric needs to write code that finds semantically 
similar “facts” that are far away, in time, from the original. 

Using Epistenet 
Cedric uses the Epistenet.getAttributeOf static method 
of the UQI that takes in a Filter object and descriptive 
attribute name, and returns the corresponding descriptive 
attribute of all EpistenetObjects that match the Filter. 
He uses the method Filter.constructRelativeTo method 
to create a RelativeFilter that adds filter constraints 
relative to a reference EpistenetObject (in this case, the 
original fact). To specify the relationship that distractor 
answers should have to the correct answer, Cedric uses two 
builder methods of the Filter class: 
lessThanTimestampWithOffset() (to only match 
EpistenetObjects that occurred at least 6 hours prior) and 

sameOntologyClass() (to only match EpistenetObjects 
from the same ontology class). All Filter builder methods 
return a reference to the modified Filter object, so Cedric 
concisely chains these two calls. The resulting code is: 
String[] distAns = Epistenet.getAttributeOf( 
    Filter.constructRelativeTo(fact) 
     .lessThanTimestampWithOffset(6*60*60*1000) 
     .sameOntologyClass(), “website-title”); 

Without Epistenet 
The full implementation of this method without Epistenet is 
too long to fully present. Indeed, for every web browser 
history provider, Cedric has to write code similar to his 
query in findPersonalDataPoint(), except the where 
clause would have to written in relation to the answerTime 
variable he extracted before and the “LIMIT 1” portion of 
the order by clause should be omitted so that he can get 
multiple matching records. Then, for each query response, 
he would have manually iterate through rows as well as 
columns in order to extract the relevant information (the 
website title) and store it an a String array.  
String[] distAns = new String[c.getCount()]; 
int counter = 0; 
if (c != null) { 
  if (c.getCount() > 0) { 
    c.moveToFirst(); 
    while (!c.isAfterLast()) { 
      distAns[counter++] = c.getString(c.getColumnIndex( 
          Browser.BookmarkColumns.TITLE)); 
      c.moveToNext(); 
    } 
  } 
  c.close(); 
} 

This code is redundant and error-prone, and again requires 
Cedric to shift programming mental models. Moreover, this 
code does not generalize across web browsers because each 
browser can have a different database schema. 

getContextHints() 
Finally, Cedric must provide users with a set of contextual 
hints to assist users if they have trouble answering the 
question. For example, knowing that one was at the park 
when browsing a website might trigger the memory of 
something that the user read and, in turn, the name of the 
site. Cedric decides that a good hint is anything that the user 
did 10 minutes before or after visiting the “correct” website.  
Using Epistenet 
Relative queries are again perfectly suited to the task. 
Cedric uses the object representing the correct answer, 
stored in the fact variable, as the reference object. He 
calls the withinTimeRange method of the RelativeFilter 
class and passes in the value of 10 minutes in milliseconds, 
indicating that he wants any fact that occurred in the 10 
minute time period before or after the reference object. 
EpistenetObject[] hints = Epistenet.get( 
  Filter.constructRelativeTo(fact) 
        .withinTimeRange(10*60*1000)); 
Cedric now has all personal data captured in the 10 minutes 
surrounding the correct answer, regardless of the number 



and type of personal data providers on the user’s phone. He 
can use the same post-processing techniques he earlier 
employed to render the hints to his users. 

Without Epistenet 
Again, the full implementation of this method without 
Epistenet is far too long to fully present. Cedric must 
compose schema-specific queries for each of the dozens of 
personal data providers that could provide a hint in the 
corresponding time period. Each of these queries on the 
surface looks similar to the findFactAndInitialize() 
method, but the specific content provider URIs, column 
names, and constraints are specific to the provider. Post-
processing will again involve a cumbersome, error-prone 
conversion of provider-specific table columns into a “hint” 
String that will then be aggregated across all hint 
providers. Despite little experience with databases, Cedric 
must dive deep into this world in order to access the 
personal data he needs. 

Summary of Differences 
To summarize, generating autobiographical authentication 
questions requires accessing personal data that spans many 
data providers and that relates to other personal data in 
very specific ways (i.e., to create distractor answers and get 
contextual hints). With Epistenet, the code required to 
access the required this data is simple and concise because: 
(1) Epistenet allows developers to query for personal data 
based on meaning; (2) each personal data point is an index 
into the larger knowledge graph; and, (3) Epistenet provides 
a native query interface that developers can use without 
switching programming mental models. But, without 
Epistenet, doing the same requires hundreds of lines of 
meticulous, error-prone code that is hard to generalize.  

IMPLEMENTATION 
We implemented a proof-of-concept version of Epistenet on 
Android 4.0.41. Our implementation comprised of two 
components. The first is an Android service that indexes 
and organizes data in an ontology, as well as exposes an 
interface to access the data through a standard Android 
content provider. The second is an external JAR—
EpistenetJAR—that serves as a “query interface” that 
developers can include in their Android applications to 
query Epistenet on devices that have the Epistenet 
application installed. EpistenetJAR itself is a lightweight 
library and can be included into any Android application. 
Note, however, that this is only a proof-of-concept 
implementation of Epistenet to demonstrate its utility, so 
specific implementation details are not critically important.  
Ideally, Epistenet would be integrated into the OS so that a 
separate application would not be necessary.  

To construct the knowledge graph, we indexed many 
system-level content providers and sensors. Specifically, we 
indexed the content providers for the SMS inbox; the call 

                                                             
1 Open sourced at: https://github.com/scyrusk/epistenet.git 

log; audio, video, and image media; web browser search 
and visit history; and calendar. In addition, we created 
content providers for the location and accelerometer 
sensors, as well as for application use and installations. 
These data providers were polled independently at regular 
intervals through a background service. Motion sensor data 
was retained if it occurred within a 3-second time window 
of another data point. To support push notifications for 
indexing data as they were created, we also created 
BroadcastReceiver classes for new SMS messages, calls, 
pictures, videos, and installed packages. A background 
service also culled expired objects. 

To avoid undermining Android permissions, data indexed 
by Epistenet had its visibility meta-attribute set to the 
default permissions required to access that data on Android. 
For example, all objects contributed by the GPS sensor 
have a visibility value of “ACCESS FINE LOCATION”—
the permission required by Android to access the GPS 
sensor. In this way, Epistenet only returns data for which a 
requesting application has permission to access. Notably, 
we are not arguing that this is sufficient to guarantee that 
no new privacy holes are created, only that we have taken 
steps to mitigate the introduction of these holes. We discuss 
privacy implications more thoroughly later. 

OTHER DEMONSTRATIVE EXAMPLES 
Personal Data Tracker & Information Management 
Personal data trackers, like RescueTime [25] and Saga [29], 
require access to collections of related personal data to 
provide utility. Representative of these types of 
applications, we created a lifelogging application that 
shows users a chronological view of their day-to-day 
lives—for example, where they were, who they contacted, 
what applications they used and what websites they visited. 

With Epistenet’s UQI, aggregating and filtering data 
spanning many data providers is simple. We displayed a list 
of dates that users could tap to get information about their 
activities on that date. For any date that a user clicked on, 
we simply queried Epistenet with a meta-constraint filter 
that constrained the timestamp of matching Epistenet 
objects to the selected 24-hour period.  
long millisDay = 24*60*60*1000; 
Epistenet.get(Filter.constructTimeRangeFilter( 
  now – daysAgo*millisDay, 
  now – (daysAgo - 1)*millisDay)); 

Notably, the code remains the same irrespective of the 
number personal data providers on the phone. Furthermore, 
without writing any complex code to “listen” to location 
pings and application usage events, we are able to show 
users where they were for the past few weeks. To make the 
application interactive, we allowed users to click on any 
rendered fact to find other similar facts that occurred in the 
past two weeks. For example, if the user clicked on a phone 
call with her contact John, she would see every other phone 
call she had with John in the previous 2 weeks. With 
relative queries, implementing this functionality was as 
simple as the following snippet: 



Epistenet.get(Filter.constructRelativeTo(choice) 
  .sameOntologyClass() 
  .sameDescriptiveAttribute(“contact”) 
  .withinTimeRange(2*7*24*60*60*1000)); 

Closeness Ordered Contact List 
Another common use for personal data is to customize 
application experiences. For example, Cover [23] uses 
personal data to predict what applications a user is likely to 
use and reorders those predictions to make them easier to 
launch. Accordingly, we made an app that reorders contacts 
based on how frequently they communicate with the user. 
The challenge here is that communication comes in many 
forms—for example, through e-mail, social media, or phone 
calls. With Epistenet’s ontology, it is easy to access all 
communications and group them by a common attribute. 
Map<String, EpistenetObject[]> comms =  
  Epistenet.getAndGroupResultsBy( 
    Filter.constructOntologyClassFilter( 
      OntologyClass.Communication),  
    “partner”);  
The comms variable now contains a Map with keys pertaining 
to the “partner” descriptive attribute, and values 
containing all objects linked to the “Communication” 
ontology class with the partner descriptive attribute equal 
to the corresponding key. So, to present a user with a 
frequency-ordered contact list, we need only rearrange the 
keys (i.e., names of contacts) of the comms Map to be in 
descending order of the length of its values (i.e., an array of 
EpistenetObjects representing communications with a 
given contact), and then show the ordered keys to the user. 

If This Then That  
Applications that use personal data conditions to “trigger” 
functionality are also common. For example, applications 
like If This Then That [30] allow end-users to specify 
“recipes” of what they would like to happen if certain 
conditions are met—for example, if a user contacts 
someone five times in a week, then “favorite” that contact.  

Recipe triggers, which are just union or intersection of 
many different conditions, nicely map to Epistenet’s filter 
compositions. For example, consider the recipe: if the user 
has not been back home in the past week, then notify the 
user that he should call home. Checking if the trigger has 
been met requires a simple composition of three filters: 
boolean wasHome = !Epistenet.any( 
  Filter.constructOntologyClassFilter( 
    OntologyClass.LocationReading) 
  .intersectWith( 
    Filter.constructAttributeEqualsFilter( 
      “location-name”, “home”) 
  .intersectWith( 
     Filter.constructTimeRangeFilter( 
      now - 7*24*60*60*1000, now)); 
If no matching objects were found, then the Epistenet.any 
method will return false and wasHome will be set to true. 

DISCUSSION & POTENTIAL LIMITATIONS  
Query Performance. One concern is whether Epistenet has 
acceptable query performance. To evaluate query 
performance, we enumerated 11 data querying tasks 

required by both the autobiographical authentication demo 
(e.g., to find a matching personal data point for the question 
“Who did you SMS at {{time}}?”) and the personal data 
tracker demo (e.g., everything the user did in a 24 hour 
period). We implemented both an Epistenet and non-
Epistenet version of these tasks. All of these tasks required 
querying multiple data sources. 

We simulated each querying task across six different values 
of the total number of data points available: 100, 500, 1000, 
2000, 4000, and 8000 data points. We ran each task 100 
times at each value of total data points for both the 
Epistenet and non-Epistenet implementations. Figure 8 
shows the results. As is expected, Epistenet is often faster 
than the default Android content providers, though its 
runtime, expectedly, does linearly increase with the number 
of indexed objects.  Perhaps most telling, though, is that all 
queries, both Epistenet and non-Epistenet, took fewer than 
200 milliseconds to run. Thus, query performance does not 
appear to be a large concern for Epistenet. We also believe 
that implementation changes can improve performance.  

Battery Consumption. Epistenet takes a small toll on 
battery life, however exactly how much should vary 
markedly across hardware, a user’s activity level, and the 
existing applications on a phone [31]. Anecdotally, on a test 
phone (Samsung Galaxy S3) running Epistenet for several 
weeks, Epistenet did not drain battery life to a point where 
the phone needed to be charged more than once per day.  

Privacy. While we have taken steps to avoid undermining 
Android permissions, our approach does not address all 
privacy issues. For example, Android does not presently 
have a permission affording applications a recent history of 
location readings—only from the point of installation. In its 
ideal form, Epistenet’s host system would have permissions 
for all data accessible through it. But, there is a broader 
privacy issue: By making it easier for developers to create 
more powerful personal data apps, we also make it easier 
for developers to violate end-user privacy. As prior work 
points out [15], this is a conundrum in ubiquitous 
computing—the same sensors and logs that allow us to 
create data rich, context-aware, personal data applications 

 
Figure 8: Execution time (in milliseconds) comparison 

across all tasks for both Epistenet and the default android 
content providers, with 95% confidence intervals. 



can also be used to create a privacy-invasive surveillance 
infrastructure. We acknowledge that this is a sensitive 
problem, but believe it to be broader than Epistenet. 

CONCLUSION  
Presently, developing compelling personal data applications 
on mobile platforms is difficult because: personal data is 
stored in isolated silos, thus suppressing relationships 
between data from different providers; interfaces to these 
data are inconsistent and force developers to query for data 
based on source-of-origin rather than meaning; and, 
developers are forced to interleave multiple programming 
abstractions to construct even simple queries, resulting in 
error-prone, un-generalizable data processing pipelines. To 
address these challenges, we implemented and evaluated 
Epistenet: an architecture that facilitates the programmatic 
access and processing of semantically related personal data. 
In short, Epistenet constructs and maintains a knowledge 
graph that structures mobile personal data by meaning and 
provides a native, unified query interface to access 
subgraphs of this data. We argue that this represents a 
promising first step in creating a solution that facilitates the 
development of intelligent smartphone applications built on 
rich, semantically interrelated personal data. 
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